

Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023 Question Paper Log Number P73584 Publications Code 4PM1_01_2311_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked **unless** the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used. If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c| leading to x = ... $(ax^2 + bx + c) = (mx + p)(nx + q)$ where |pq| = |c| and |mn| = |a| leading to x = ...

2. <u>Formula</u>:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. <u>Completing the square:</u> $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c = 0$, $q \neq 0$ leading to x = ...

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."**Exact answers:**

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

	November 2023 4PM1 Paper 1 Mark Scheme	
Question	Mark Scheme Scheme	Marks
1	$34 + 11\sqrt{5} = \frac{1}{2} \times \left(2 + 4\sqrt{5}\right) \left(a + b\sqrt{5}\right)$	M1
	$\Rightarrow a + b\sqrt{5} = \frac{2 \times (34 + 11\sqrt{5})}{2 + 4\sqrt{5}} \text{or} a + b\sqrt{5} = \frac{(34 + 11\sqrt{5})}{1 + 2\sqrt{5}} \text{oe}$	M1
	$= \frac{\left(34+11\sqrt{5}\right)}{\left(1+2\sqrt{5}\right)} \times \frac{\left(1-2\sqrt{5}\right)}{\left(1-2\sqrt{5}\right)} = \frac{34-68\sqrt{5}+11\sqrt{5}-110}{-19} \text{ or } \text{ or }$	M1
	$= \frac{\left(68 + 22\sqrt{5}\right)}{\left(2 + 4\sqrt{5}\right)} \times \frac{\left(2 - 4\sqrt{5}\right)}{\left(2 - 4\sqrt{5}\right)} = \frac{136 - 272\sqrt{5} + 44\sqrt{5} - 440}{-76} \text{ oe}$	
	$=4+3\sqrt{5}$ or $a=4$, $b=3$	A1 [4]
	$\frac{\text{ALT}}{24 + 11 \sqrt{5}} = \frac{1}{2} \left(2 + \sqrt{5}\right) \left(-1 \sqrt{5}\right)$	M1
	$34+11\sqrt{5} = \frac{1}{2} \times (2+4\sqrt{5})(a+b\sqrt{5}) \text{oe}$ $(34+11\sqrt{5}) = a+b\sqrt{5}+2a\sqrt{5}+10b \text{oe eg} 68+22\sqrt{5}=2a+2b\sqrt{5}+4a\sqrt{5}+20b$ $(34+11\sqrt{5}) = (a+10b) + (2a+b)\sqrt{5} \text{oe eg} (68+22\sqrt{5}) = 2a+20b + (4a+2b)\sqrt{5}$	M1
	$\Rightarrow 34 = a + 10b \text{ and } 11 = 2a + b \text{ oe eg } \Rightarrow 68 = 2a + 20b \text{ and } 11 = 4a + 2b$ Solves simultaneous equations by any method $= 4 + 3\sqrt{5} \text{ or } a = 4, b = 3$	M1 A1 [4]
	Total	4 marks

PMT

Mark	Notes
M1	For the correct statement for the area, this may be explicit or implied by working, but must be
	a fully correct statement. Allow $a + b\sqrt{5}$ to be written as <i>BC</i> or denoted by a letter.
M1	For correctly rearranging to the form
	$2 \times (34 + 11\sqrt{5})$ (34 + 11 $\sqrt{5}$)
	$a+b\sqrt{5} = \frac{2 \times (34+11\sqrt{5})}{2+4\sqrt{5}}$ oe or $a+b\sqrt{5} = \frac{(34+11\sqrt{5})}{1+2\sqrt{5}}$ oe
	This mark may also be awarded for rearranging an initial formula, missing the $\frac{1}{2}$
	ie for correctly rearranging $34+11\sqrt{5} = (2+4\sqrt{5})(a+b\sqrt{5})$ to $a+b\sqrt{5} = \frac{(34+11\sqrt{5})}{2+4\sqrt{5}}$ oe
	Allow $a + b\sqrt{5}$ to be written as <i>BC</i> or denoted by a letter.
M1	For multiplying eg $\frac{\left(34+11\sqrt{5}\right)}{\left(1+2\sqrt{5}\right)} \times \frac{\left(1-2\sqrt{5}\right)}{\left(1-2\sqrt{5}\right)}$ or $\frac{\left(68+22\sqrt{5}\right)}{\left(2+4\sqrt{5}\right)} \times \frac{\left(2-4\sqrt{5}\right)}{\left(2-4\sqrt{5}\right)}$ - allow the 2 to
	remain factorised.
	or, if missing the $\frac{1}{2}$ for the first method mark
	$\frac{\left(34+11\sqrt{5}\right)}{\left(2+4\sqrt{5}\right)} \times \frac{\left(2-4\sqrt{5}\right)}{\left(2-4\sqrt{5}\right)} = \frac{68-136\sqrt{5}+22\sqrt{5}-220}{-76} \text{ oe}$
	Allow one error in multiplying out. Look for equivalences.
	The question precludes the use of a calculator, so method must be shown.
A1	$4 + 3\sqrt{5}$ or $a = 4$, $b = 3$
ALT	
M1	For the correct statement for the area, this may be explicit or implied by working, but must be
	a fully correct statement. Allow $a + b\sqrt{5}$ to be written as <i>BC</i> or denoted by a letter.
M1	For multiplying out correctly as shown in the scheme.
	But if the initial formula is missing the $\frac{1}{2}$, the mark may also be awarded for
	$(34+11\sqrt{5}) = 2a + 2b\sqrt{5} + 4a\sqrt{5} + 20b$
M1	For correctly equating coefficients and any valid complete method to solve a pair of simultaneous equations, each equation in a and b , allow one error. This work may also be done
	with the $\frac{1}{2}$ missing from the formula and that doesn't count as 'one error'.
	The question precludes the use of a calculator, so method must be shown.
A1	$4 + 3\sqrt{5}$ or $a = 4$, $b = 3$

Question	Scheme	Marks
For part (a) of this question, mark using the scheme which gives the most marks.	
2a	$p = 2, q = \frac{1}{8}, r = -\frac{97}{32}$	B1B1B1
ALT	$\left(g(x)=2x^2+\frac{1}{2}x-3=\right)2\left(x^2+\frac{1}{4}x-\frac{3}{2}\right)$ or $2\left(x^2+\frac{1}{4}x\right)-3$	M1
	$("2")\left(\left[x+\frac{1}{8}\right]^2-\frac{1}{64}-\frac{3}{2}\right)$ or $("2")\left(\left[x+\frac{1}{8}\right]^2-\frac{1}{64}\right)-3$	M1
	$2\left[x+\frac{1}{8}\right]^2 - \frac{97}{32}$ or $p=2$, $q=\frac{1}{8}$, or $r=-\frac{97}{32}$ or	A1 [3]
(b)	(i) $(g(x)_{\min} =)'' - \frac{97}{32}''$	B1ft
	(ii) $(x=)-"\frac{1}{8}"$	B1ft [2]
(c)	(i) $h(x)_{\min} = "-\frac{97}{32}"$	B1ft
	(ii) $x = \sqrt[3]{"-\frac{1}{8}"} = -\frac{1}{2}$	B1ft [2]
	Tota	ul 7 marks

Part	Mark	Notes	
• M	lark usin	g the B scheme first.	
• If	not full r	narks – use the MMA scheme also, if appropriate.	
• Sa	ame score	e – apply the B marks.	
• H	igher sco	re – apply the marks from the MMA scheme.	
(a)	B1	For one of p , q , or r correct.	
Different	B1	For two of p , q , or r correct.	
to Epen marks	B1	For all of p , q , or r correct – note q and r can be written as equivalent fractions.	
ALT	M1	Correctly takes out 2 as a common factor to give either of the 2 expressions shown.	
	M1	Completes the square correctly, regardless of any factor on the outside – follow	
		through their factorisation.	
		$(x^2 + ax + b)$ or $(x^2 + ax) + c \Rightarrow$	
		ie $\left[\left(x+\frac{a}{2}\right)^2-\left(\frac{a}{2}\right)^2+b\right]$ or $\left[\left(x+\frac{a}{2}\right)^2-\left(\frac{a}{2}\right)^2\right]+c$ $a,b,c \neq 0$	
	A1	Fully correct answer – note q and r can be written as equivalent fractions.	
-		not ask students to show working nor preclude the use of a calculator, so if	
values are	e simply	listed, these can be given marks from the B scheme	
(b) (i)	B1ft	For the correct value or ft their r	
(ii)		For the correct value or ft their $-q$	
		i) and (ii) is present for parts (b) and (c) – marks may be awarded for the	
	values presented in the correct order.		
B0 B0 if n		ed and work doesn't meet this condition.	
(c) (i)	B1ft	For the correct value or ft their $-\frac{97}{32}$	
(ii)	B1ft	For the correct value or ft the cube root of their $-\frac{1}{8}$ (evaluated).	

3(a) $ \begin{pmatrix} y = \int (mx^2 - 10x - 37) dx = \int \frac{mx^3}{3} - \frac{10x^2}{2} - 37x(+c) \\ [At (1, 20)] \\ 20 = \frac{m \times 1^3}{3} - \frac{10 \times 1^2}{2} - 37 \times 1 + c \left(\Rightarrow 62 = \frac{m}{3} + c \right) \text{ oe} \\ [Factor of (x-5)] \\ 0 = \frac{m \times 5^3}{3} - \frac{10 \times 5^2}{2} - 37 \times 5 + c \left(\Rightarrow 310 = \frac{125m}{3} + c \right) \Rightarrow m = 6 \qquad c = 60 $	M1 dM1
$20 = \frac{m \times 1^3}{3} - \frac{10 \times 1^2}{2} - 37 \times 1 + c \left(\Longrightarrow 62 = \frac{m}{3} + c \right) \text{oe}$ [Factor of $(x-5)$]	
$\begin{bmatrix} Factor of (x-5) \end{bmatrix}$	
$m \times 5^3 10 \times 5^2 27 \times 5 \times (210 125m)$	N (1 N (1
$0 = \frac{1}{3} - \frac{1}{2} - \frac{3}{5} + c \left(\Rightarrow 310 = \frac{1}{3} + c \right) \Rightarrow m = 6 \qquad c = 60$	M1 M1
$\Rightarrow (g(x)=)2x^3-5x^2-37x+60 *$	A1cso [5]
ALT 3 rd and 4 th method marks	M1 M1
$\left((x-5)\left(\frac{m}{3}x^2 + bx \mp \frac{c}{5}\right) = \frac{m}{3}x^3 - 5x^2 - 37x \pm c \Longrightarrow m = 6 \qquad c = 60 \qquad (b = 5) \right)$	
Special Differentiates the given expression for g (x)correctly to give	SC1
case up to SC3 $2(3x^2) - 5(2x) - 37(=6x^2 - 10x - 37)$	
- mark as and concludes $m = 6$	
M1dM1M1 M0A0 in Correctly substitutes $x = 5$ into the given function and shows $g(x) = 0$	SC1
Epen $(g(5) =) 2 \times 5^3 - 5 \times 5^2 - 37 \times 5 + 60 = 0$	
Correctly substitutes $x = 1$ into the given function and shows and $g(x) = 20$	
$(g(1) =) 2 \times 1^3 - 5 \times 1^2 - 37 \times 1 + 60 = 20$	SC1
(b) $\frac{2x^2 + 5x - 12}{x - 5\sqrt{2x^3 - 5x^2 - 37x + 60}}$	M1
$2x^{2} + 5x - 12 = (2x - 3)(x + 4)$	M1
(g(x) = (x-5)(2x-3)(x+4) = [0])	
$\Rightarrow x = 5, \frac{3}{2}, -4$	A1
Total 8	[3] marks

Part	Mark	Notes
(a)	M1	For a minimally acceptable attempt to integrate the given expression (see general
		guidance). No power of x to decrease.
		+c is not required for this mark
	dM1	Correctly substitutes $x = 1$ and $y = 20$ to form an equation – simplification is not
		required
		Dependent on 1 st method mark.
		A fully correct equation with no incorrect working can imply this mark.
		We will be lenient on not seeing the substitution of $x = 1$ as this is trivial, so long as
		the resulting equation is correct from their $g(1) = 20$.
-		+c is not required for this mark
	M1	Uses the information correctly that $(x - 5)$ is a factor of g (x) by correct substitution
		of $x = 5$ and $g(x) = 0$ into their $g(x)$.
		Their $g(x)$ must be a 4 term cubic expression.
		A fully correct equation with no incorrect working can imply this mark – but if the equation is incorrect we must see substitution of $u = 5$ such that $g(5) = 0$.
-	M1	equation is incorrect we must see substitution of $x = 5$ such that $g(5) = 0$.
	1111	Uses a valid and complete method to solve their resulting simultaneous equations which must be in two variables. Allow up to 2 errors.
-	Al	For the correct function as shown or the correct expression.
	cso	This is a show question. There must be no errors for the award of this mark.
ALT	3 rd M1	Uses the information correctly that $(x - 5)$ is a factor of g (x) by writing a correct
	5 1011	statement like the one shown for their g (x).
		Their g (x) must be a 4 term cubic expression.
-	4 th M1	Uses a valid and complete method to solve their resulting simultaneous equations in
		three variables. Allow up to 2 errors. It is not necessary to see the value for "b".
(b)	M1	For an attempt at polynomial division or equate coefficients to reach a 3 term
		quotient.
		The minimally acceptable quotient is $2x^2 \pm 5x \pm k$ $k \neq 0$ where k is a constant.
		In the absence of any other working, $2x^2 \pm 5x \pm k$ $k \neq 0$ may be accepted as evidence
		of working.
-	M1	For attempting to factorise their quotient which must be of the form
		$2x^2 \pm 5x \pm k$ $k \neq 0$ - we must at least see a quadratic factor to factorise.
		See General Guidance for the definition of an attempt. It would also be possible to
		see a minimal attempt to use the quadratic formula or completing the square to solve
		(see general guidance) if their quadratic, of the form $2x^2 + 5x \pm k$ $k \neq 0$ does not
		factorise. If using the formula the substitution of their <i>a</i> , <i>b</i> and <i>c</i> must be completely
		correct.
	A1	For the correct values of x
Candidat	tes have c	learly been directed to use algebra in the question and therefore 0 marks can be scored
	seeing M	

Question	Scheme	Marks
4(a)	$(3 \times 14 - 2 \times 12 - p = 0 \Longrightarrow) p = 18$	B1
	$3y - 2q - "18" = 0 \Longrightarrow 3 \times 2 - 2q - "18" = 0 \Longrightarrow q =$ $q = -6$	M1 A1 [3]
(b)	$(X(x,y)=)\left(\frac{1\times "-6"+2\times 12}{3},\frac{1\times 2+2\times 14}{3}\right)$ oe = (6,10)	B1B1 or M1A1
	$(\text{Gradient of } AB =) = \frac{2}{3}$ oe	B1
	(Gradient of $L =$) $-\frac{1}{\frac{2}{3}} \left(= -\frac{3}{2} \right)$	B1ft
	$y - "10" = -\frac{1}{"\frac{2}{3}"} (x - "6") \left(\Longrightarrow y = -\frac{3}{2}x + 19 \right)$	M1
	$\Rightarrow 3x + 2y - 38 = 0$ oe	A1
	Where <i>a</i> , <i>b</i> and <i>c</i> are integers.	[6]
	Τα	tal 9 marks

	Mark	Notes
(a)	B1	For $p = 18$
	M1	Uses their value of p and substitutes $y = 2$ and finds a value for q .
	A1	For the correct value of <i>q</i> .
First	2 marks of (b)	– use the scheme which gives the most marks to candidates.
(b)	B1 (M1 ePen)	For one correct value (6, 10).
	B1 (A1 ePen)	For both correct values (6, 10).
	or M1	Correct method for finding both coordinates, using their <i>q</i> . Look for any equivalent methods eg similar triangles.
	or A1	Both correct values.
	B1	For a fully correct unsimplified or simplified gradient of AB
		Note this mark is awarded for finding or stating the gradient and if simplified, it must be clear that $\frac{2}{3}$ is not a fraction from the given ratio. Accept $\frac{14-2}{126}$
		This mark may be implied for a correct gradient of $-\frac{3}{2}$ used in further work.
	B1ft	For finding the negative reciprocal of their gradient – does not need to be simplified.
	M1	For a full and correct method to find the equation for the line L using their
		coordinates of X and their perpendicular gradient. This need not be simplified.
		If $y = mx + c$ is used, the correct value of c must be found for their coordinates and gradient.
		It must be clear the candidate is using their coordinates for <i>X</i> and not, for example simply the numbers from the coordinates of <i>A</i> and <i>B</i>
	A1	For the correct equation of the line in the required form – any equivalent where a, b and c are integers.

Question	Scheme	Marks
5	$\sqrt{2x+6} = \frac{x}{3} + 1 \Longrightarrow 2x + 6 = \frac{x^2}{9} + \frac{2x}{3} + 1 \Longrightarrow \frac{x^2}{9} - \frac{4x}{3} - 5 = 0$	M1
	$\Rightarrow x^2 - 12x - 45 = 0 \Rightarrow (x+3)(x-15) = 0 \Rightarrow x = -3, 15$	M1A1
	$\begin{bmatrix} \text{When } x = 15, y = 6 \end{bmatrix}$	
	$(V =) \pi \int_{-3'}^{15'} (2x+6) \mathrm{d}x - \frac{1}{3} \times \pi \times 6'^2 \times (15'3')$	M1M1
	$(V =)(\pi)\left[\frac{2x^2}{2} + 6x\right]_{'=3'}^{'15'} - 216\pi$	M1
ALT last	$ (V =)\pi \left[\left(\frac{2 \times '15'^2}{2} + 6 \times '15' \right) - \left(\frac{2 \times ('-3')^2}{2} + 6 \times ('-3)' \right) \right] - 216\pi (= 324\pi - 216\pi) = 108\pi $ OR	M1A1 [8]
5 marks	$(V =)\pi \int_{-3'}^{15'} (2x+6) dx - \pi \int_{-3'}^{15'} \left(\frac{x^2}{9} + \frac{2x}{3} + 1\right) dx \text{ or } \pi \int_{-3'}^{15'} (2x+6) dx - \pi \int_{-3'}^{15'} \left(\frac{x}{3} + 1\right)^2 dx$	M1M1
	$(V =)(\pi) \left[\frac{2x^2}{2} + 6x \right]_{'-3'}^{'15'} - \pi \left[\frac{x^3}{9 \times 3} + \frac{2x^2}{3 \times 2} + x \right]_{'-3'}^{'15'}$	M1
	$V = \pi \left[\left(\frac{2 \times '15'^2}{2} + 6 \times '15' \right) - \left(\frac{2 \times ('-3')^2}{2} + 6 \times ('-3') \right) \right]$	M1A1
	$-\pi \left[\left(\frac{'15'^3}{9 \times 3} + \frac{2 \times '15'^2}{3 \times 2} + 15 \right) - \left(\frac{('-3')^3}{9 \times 3} + \frac{2 \times ('-3')^2}{3 \times 2} - 3' \right) \right] = 108\pi$	WIIAI
	Total 8	8 marks

Mark	Notes
M1	Sets the equation of the curve = equation of line and attempts to form a 3TQ, which must include
	an attempt to expand $\left(\frac{1}{3}x+1\right)\left(\frac{1}{3}x+1\right)$. Allow only 1 error in processing overall.
	Accept as a minimum for this mark: $\frac{x^2}{9} \pm Jx - K = 0$ or $x^2 \pm Lx - M = 0$ $J, K, L, M > 0$
M1	Solves their 3TQ using a full and minimally acceptable method (see general guidance) to find two
	values. They must show their method if using an incorrect 3TQ. Note this is not a dependent mark, so the candidate can solve a 3TQ not of the form required for
	the first M mark.
A1	x = -3, 15
	M1 M1 A1 may be awarded for both correct values given without working.
M1	For the correct expression for the volume of rotation under the curve including π and ft their $x = -3, 15$.
M1	For the correct expression for the volume of the cone. Ft their $x = -3$, 15 and their value of y
	only (must be clear they are using a value of y. '6' cannot be 15 or – 3). $\frac{1}{3} \times \pi \times 6'^2 \times (15'3')$
M1	For an attempt to integrate their expression for the curve. Minimally acceptable attempt (see general guidance) – no power of x to decrease. π and limits don't need to be present.
M1	For substitution of their limits into any changed expression representing their volume of the curve
	and evaluation of the final volume using their volume of the cone.
	Not a dependent mark but substitution must be into their changed expression.
	This mark may be awarded for the work being done in parts and subtracted in any order at any
	point, but there must be a subtraction. This M mark may be implied by a correct final answer.
A1	For $V = 108\pi$
	This mark may not be awarded if the subtraction is the incorrect way around and the sign of the answer is simply changed at the end.
ALT 1	ast 5 marks
M1	For the correct expression for the volume of rotation under the curve including π and ft their $x =$
	-3, 15
M1	For the correct expression for the volume of rotation under the straight line including π and ft
	their $x = -3, 15$
Where	candidates have combined the 2 expressions, M1 M1 can be awarded for $\pm \pi \int_{-3}^{15} \left(\frac{x^2}{9} - \frac{4x}{3} - 5 \right) dx$ or
	ear attempt to combine the correct two expressions, even if the following simplification is incorrect.
[Note f	or final A mark correct integral is $\pi \int_{-3}^{15} \left(-\frac{x^2}{9} + \frac{4x}{3} + 5 \right) dx$
M1	For an attempt to integrate the expression for either the curve or the line or what they intend to
	be <u>their</u> combined expression. Minimally acceptable attempt (see general guidance) – no power
	of x to decrease.
	π and limits do not need to be present for this mark.
M1	For substitution of their limits into any changed expressions representing their volume of the line
	and the curve and evaluation of the final volume or their combined expression.
	There must be at least one correct substitution of both limits into each expression.
	Not a dependent mark but substitution must be into changed expressions.
	This mark may be awarded for the work being done in parts and subtracted in any order at any
	point, but there must be a subtraction. This M mark may be implied by a correct final answer.
A1	For $V = 108\pi$ This mark may not be awarded if the subtraction is the incorrect way around
ЛІ	and the sign of the answer is simply changed at the end.

Questio	Scheme	Mark	
n		S	
PLEASE REMEMBER TO CHECK DIAGRAM FOR RELEVANT LENGTHS AND WORKING Throughout the question where lengths are in brackets eg ($AC =$), this means you don't have to see $AC =$.			
	ark cannot be awarded for a clearly incorrect method eg $VO = \sqrt{x^2 + x^2}$ for d mark in (a) scores M0	or the	
6(a)			
	$(AC =)\sqrt{x^{2} + x^{2}} \left(=\sqrt{2}x\right) \text{or} (AC =)\frac{x}{\sin 45} \text{ or} (AC =)\frac{x}{\cos 45}$ $(AO =)\sqrt{\left(\frac{x}{2}\right)^{2} + \left(\frac{x}{2}\right)^{2}} \left(=\sqrt{\frac{x^{2}}{2}} = \frac{x}{\sqrt{2}}\right) \text{or} (AO =)\frac{\frac{x}{2}}{\sin 45} \text{ or} (AO =)\frac{\frac{x}{2}}{\cos 45}$	M1	
	$(VO =)\sqrt{x^2 - \left(\frac{\sqrt{2}x'}{2}\right)^2}$ or $\sqrt{x^2 - \left(\frac{1}{2}\sqrt{x^2 + x^2}\right)^2}$ or $\sqrt{x^2 - \frac{x^2}{2}} \left(=\sqrt{\frac{1}{2}x^2}\right)^2$ or $(VO =)\frac{\sqrt{2}}{2}\tan 45$	M1	
	$=\frac{\sqrt{2}}{2}x \text{ (cm)}^*$	A1*cso [3]	
ALT	Any indication the candidate realises triangle AVC is right angled and	M1	
	isosceles. $\sin 45 = \frac{VO}{x}$ or $x \sin 45 = VO$	M1	
	$VO = \frac{\sqrt{2}}{2} x *$	A1*cs	
	$ro = 2^{r}$	0 [3]	
(b)	$(\angle AVC =)\cos^{-1}\left(\frac{x^2 + x^2 - (\sqrt{2}x)^2}{2 \times x \times x}\right) \text{ or } (\angle AVC =)2 \times \sin^{-1}\left(\frac{\sqrt{2}x}{2}\right)$	M1	
	or $(\angle AVC =) 2 \times \cos^{-1} \left(\frac{\sqrt{2}}{2} x \right)$ or $(\angle AVC =) 2 \times \tan^{-1} \left(\frac{\sqrt{2}}{2} x \right)$ = 90°	A1 [2]	

(c)	Let M be the midpoint of AB and let N be the midpoint of DC	
	$(VM = VN =) \sqrt{x^2 - \left(\frac{x}{2}\right)^2} = \left(\frac{\sqrt{3}}{2}x\right)$	M1
	$\cos MVN = \frac{\left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ ^{2} + \left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ \right)^{2} - x^{2}\right)}{2 \times \left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ \right) \times \left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ \right)} \text{ or }$	
	$(\angle MVN =)\cos^{-1}\left(\frac{\left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ ^{2} + \left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ \right)^{2} - x^{2}\right)}{2\times\left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ \right)\times\left(\left\ \frac{\sqrt{3}}{2}x^{*}\right\ \right)}\right) \text{ or }$	M1
	$\left(\angle MVN = \right) 2 \times \cos^{-1} \left(\frac{\frac{\sqrt{2}}{2}x}{\frac{\sqrt{3}}{2}x^{"}} \right) \text{or} (\angle MVN =) 2 \times \sin^{-1} \left(\frac{\frac{1}{2}x}{\frac{\sqrt{3}}{2}x^{"}} \right)$	
	or $(\angle MVN =) 2 \times (\angle MVO =)$ and $\cos MVO = \frac{\frac{\sqrt{2}}{2}x}{\frac{\sqrt{3}}{2}x}$	
	$"\frac{\sqrt{3}}{2}x"$ 70.528° ≈ 70.5°	A1 [3]
	ALT	M1
	$OM = \frac{x}{2}$	
	$\left(\angle MVN = \right) 2 \tan^{-1} \left[\frac{\frac{x}{2}}{\frac{\sqrt{2}x}{2}}\right] = \left(2 \tan^{-1} \left[\frac{1}{\sqrt{2}}\right] = \right) 70.528^{\circ} \approx 70.5^{\circ}$	M1A1 [3]
(d)	Volume = $\frac{1}{3} \times \left(\frac{\sqrt{2}}{2}x\right) \times x^2 \left(=\frac{\sqrt{2}}{6}x^3\right)$ oe	M1
	$200 = \frac{1}{3} \times \left(\frac{\sqrt{2}}{2}x\right) \times x^2 \Longrightarrow x =$	dM1
	$x = 9.4672 \approx 9.47$ (cm)	A1 [3]
	Total	11 marks

Part	Mark	Notes
		must see the algebraic proof, including x throughout.
(a)	M1	For correct use of Pythagoras theorem or any correct appropriate trigonometry and a
()		complete method to find the length AC or AO is candidates must rearrange correctly –
		minimum steps as shown in mark scheme and no errors must be present.
	M1	For a full, correct and complete method to find VO, using their AC/AO.
	Al	
	cso	For $\frac{\sqrt{2}}{2}x$ (cm) – correct solution only, no errors or omissions, minimum steps as
		2
AIT	M1	shown.
ALT	M1	Any indication the candidate realises triangle AVC is right angled and isosceles. This
		mark may be implied by correct working for the next method mark or present on the diagram.
	M1	For the correct trig minimum steps as shown and no errors.
	Al	
		For $\frac{\sqrt{2}}{2}x$ (cm) – correct solution only, no errors or omissions.
	cso	2
(b)	M1	For any correct appropriate trigonometry to find angle AVC. $(\angle AVC =)$
		If finding $\angle AVO$, must be doubled for this mark.
		_
		AC must be $\sqrt{2}x$ oe, AO must be $\frac{\sqrt{2}}{2}x$ oe.
	A1	2
		For 90°
		11A1 for candidates writing down the correct answer by inference.
Consist	e nt omiss	ion of x is permissible for all marks in part (b).
(c)	M1	For correct Pythagoras theorem to find the lengths of VM or VN
	M1	For any correct trigonometry to find angle MVN, such as the statements shown in the
		mark scheme.
		The candidate can state, for example,
		cos(MVN) = fully correct expression (using their VN and VM)
		or, for example,
		\cos^{-1} (fully correct expression), where they do not have to write angle $MVN =$
		i.e – this can involve any fully correct method to reach an equation which would allow
		them to use inverse trig to find <i>MVN</i> or if they use inverse trig, a fully correct
		expression must be seen with the correct inverse trig function. Send any items where
		allocation of marks is unclear (potentially using other methods to the main and ALT) to Review.
		Keview.
		or fully correct method to find angle <i>MVO</i> which must then be doubled for this mark.
	A1	For any answer stated which rounds to 70.5° (ie more decimal places is condoned).
Consist		ion of x is permissible for all marks in part (c).
ALT	M1	• • • • •
	1111	States or uses $OM = \frac{x}{2}$
	N / 1	
	M1	For fully correct method to find angle MVO which must then be doubled for this mark.
(4)	A1 M1	For any answer stated which rounds to 70.5° (ie more decimal places is condoned).
(d)	M1	For a correct unsimplified expression for the volume of the pyramid as shown.
	dM1	For placing their expression = 200, which must involve a term in x^3 , and a fully correct method (second product to achieve)
		method/rearrangement to solve.
		Note this mark is dependent on the first method mark, so they must have got the correct
	A 1	unsimplified expression even if then simplified incorrectly. For any final answer stated which rounds to 9.47 (ie more decimal places is condoned).
	A1	1 rol any must answer stated which rounds to 9.47 (ife more decimal places is condoned).

Question	Scheme	Marks
7(a)	$\left(\frac{ar^2}{a} = r^2 = \right) \frac{\frac{2704}{625}}{16}$ oe	M1
	(a) = 16 $(r=)\pm\frac{13}{25}$ oe	A1 [2]
	$(S_{\infty} =) \frac{16}{1 - "\frac{13}{25}"} = \frac{100}{3}$ oe	M1A1 [2]
(c)	$\frac{16\left(1 - \left("\frac{13}{25}"\right)^{n}\right)}{1 - "\frac{13}{25}"} > 33\left(\Longrightarrow 1 - \left(\frac{13}{25}\right)^{n} > 0.99\right) \text{ oe}$	M1
	$\Rightarrow \left("\frac{13}{25}" \right)^n < 0.01 \qquad \text{oe}$	dM1
	$n \lg \left("\frac{13}{25}" \right) < \lg \left(0.01 \right) \qquad \text{oe}$	M1
	$\Rightarrow n > \frac{\lg(0.01)}{\lg\left("\frac{13}{25}"\right)} \Rightarrow n > 7.04oe \Rightarrow (n =)8$	dddM1A1 [5]
Total 9 marks		

Part	Mark	Notes
(a)	M1	For any correct unsimplified expression for r or r^2 .
	A1	For $r = \pm \frac{13}{25}$ oe
(b)	M1	Uses the correct formula for the sum to infinity of a geometric series using their positive $r < 1$ and the given first term.
	A1	For $\frac{100}{3}$ oe. Allow 33.33, 33.3 ^r , 33.3 etc.
		The question demand is for an exact answer so there must be some indication of recurrence. This could be min 1 dp with dots after ie 33.3, but cannot be a terminating decimal.
(c)	M1	Uses the correct formula for the sum of a geometric series to set up an inequality or equation in terms of <i>n</i> , <i>f</i> t their positive $r < 1$, must be using $a = 16$ Allow $<$ or $>$ or $=$
	dM1	For simplifying (allow errors in simplification) their inequality or equation in n to
		the form $\left(\left\ \frac{13}{25} \right\ \right)^n < d d \neq 0$. Allow $\left\ \frac{13}{25} \right\ $ to be their positive $r < 1$.
		Allow $< or > or =$. Dependent on the 1 st method mark.
	M1	Takes logarithms (any base) of their exponential equation or inequality <u>correctly</u>
		on both sides and correctly uses the power law to reach $n \lg(a) < \lg(b)$.
		or 'de-logs' their exponential equation or inequality <u>correctly</u> to get $\log_c d < e$
		This isn't a dependent mark, but the candidate must be able to correctly take logs of both sides and use the power law or correctly de-log their equation/inequality. r can be any value carried through from part (a) for this mark.
		Allow $< $ or $>$ or $=$, the inequality doesn't need to have been reversed at this point.
	dddM1	For finding a value for <i>n</i> setting up the correct inequality (with their positive $r < 1$) from the beginning and where the inequality sign has been reversed at the appropriate point during their work.
		Dependent on all previous method marks.
		If candidates give a final answer of $(n =) 8$ – this mark can be implied even if the inequality sign is not correctly reversed.
	A1	For $(n=)$ 8

Question	Scheme	Marks
8(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{5x^2 \times 2 \times 3 \times \mathrm{e}^{3x+1} - 10x \times 2\mathrm{e}^{3x+1}}{\left(5x^2\right)^2} \text{oe}$	M1A1A1
	$\left(\frac{dy}{dx}\right) = \frac{xe^{3x+1}(30x-20)}{25x^4} \text{ or } \frac{10xe^{3x+1}(3x-2)}{25x^4}$	dM1
	$=\left[\frac{10e^{3x+1}(3x-2)}{25x^3}\right] = \frac{2e^{3x+1}(3x-2)}{5x^3}$	A1 [5]
ALT – use of product	$\left(\frac{dy}{dx}\right) = 2e^{3x+1}(-1) \times 2 \times 5x \times (5x^2)^{-2} + 2 \times 3e^{3x+1}(5x^2)^{-1} \text{ oe}$	M1A1A1
rule	$= x \times (5x^2)^{-2} e^{3x+1} (-20+30x) \text{ or } 10x \times (5x^2)^{-2} e^{3x+1} (-2+3x)$	dM1
	$=\left[\frac{10e^{3x+1}(3x-2)}{25x^3}\right]=\frac{2e^{3x+1}(3x-2)}{5x^3}$	A1 [5]
(b)	$\left(\frac{\delta y}{y} \times 100\right) = \frac{2xe^{3x+1}(3x-2)}{5x^4} \times \delta x \times \frac{100}{y} \text{ or } \frac{2e^{3x+1}(3x-2)}{5x^3} \times \delta x \times \frac{100}{y} \text{ oe}$	M1
	or $(\delta y =) = \frac{2xe^{3x+1}(3x-2)}{5x^4} \times \delta x$ or $\frac{2e^{3x+1}(3x-2)}{5x^3} \times \delta x$ or $y \times \frac{(3x-2)}{5x} \times \delta x$	
	δx may also be written as $0.02x$	
	$\left(\frac{\delta y}{y} \times 100 = \right) \frac{2e^{3x+1}(3x-2)}{5x^3} \times 0.02x \times \frac{100}{2e^{3x+1}} \text{ oe}$	dM1
	or $y \times \frac{(3x-2)}{x} \times 0.02x \times \frac{100}{y}$ 5x ²	A1 [3]
	(% change in $y = 6x - 4$	
	Tot	al 8 marks

Part	Mark	Notes
(a)	M1	For attempting to use the quotient rule.
		The definition of an attempt is as follows:
		• The denominator must be correct.
		• The terms in the numerator subtracted either way around
		The expression must be of the form:
		$K \times x^2 \times e^{3x+1} - L \times x \times e^{3x+1}$ $K \neq 10 \text{ or } 15 \text{ and } L \neq 10 \text{ and } K \to 0$
		$\frac{K \times x^2 \times e^{3x+1} - L \times x \times e^{3x+1}}{\left(5x^2\right)^2} K \neq 10 \text{ or } 15 \text{ and } L \neq 10 \text{ and } K, L > 0$
		Note <i>K</i> and <i>L</i> may not be simplified and will often need to be checked.
	A1	Following M1 (general principle of marking), at least one fully correct simplified or unsimplified term on the numerator.
	A1	Fully correct unsimplified derivative
	dM1	For correctly taking out common factors of x and e^{3x+1} and attempting to simplify.
		A numerical factor does not need to be taken out at this point.
		Dependent on the 1 st method mark.
	A1	For the correct derivative in the required form.
ALT	M1	For attempting to use the product rule to give an expression of the form
use of		$Me^{3x+1}x \times (5x^2)^{-2} + Ne^{3x+1}(5x^2)^{-1}M < 0 \text{ and } \neq 4,10 N > 0 \text{ and } \neq 2,3$
product	A1	Following M1 (general principle of marking), at least one term is fully correct.
rule	A1	Fully correct unsimplified derivative
	M1	For correctly taking out common factors of x and $(5x^2)^{-2}$ and e^{3x+1} and attempting
		to simplify. A numerical factor does not need to be taken out at this point.
		Dependent on the 1 st method mark.
D 1 0	Al	For the correct derivative in the required form.
For the find Review.	inal M ma	ark in particular – any work felt to be of credit not fitting the mark scheme – send to
(b)	M1	For any of the statements shown, using their answer from part (a), which must be of
		the form: $\frac{Ae^{3x+1}(Bx-C)}{Dx^3}$
		Dx^3
		Note, we'll allow candidates to use an expression here that is not quite of the form
		given in part (a).
	12.64	This mark may be implied by further correct working.
	dM1	For substituting in the expression for y and a correct attempt to simplify their
		expression to the required form. You must check their working here, do not allow an answer that has come from
		incorrect working (general principle anyway, but extra care needed for this
		question).
		Condone 100 written as 100% if the candidate is correctly multiplying by 100.
		Dependent on previous method mark.
	A1	For the correct expression as shown.

Question	Scheme	Marks
9(a)	$\left(1-8x^{2}\right)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)\left(-8x^{2}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-8x^{2}\right)^{2}}{2!}$	M1
	$+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)\left(-8x^{2}\right)^{3}}{3!}$	
	$(1-8x^2)^{-\frac{1}{2}} = 1+4x^2+24x^4+160x^6+\dots$	A1A1 [3]
(b)	$\left((a+bx)''(1+4x^2+24x^4+160x^6)''=\right)(a+bx+4ax^2)+4bx^3+24ax^4$	M1A1ft
	$4b = 20 \Longrightarrow b = 5$	A1
	$24a = 48 \Longrightarrow a = 2$	A1 [4]
(c)	$\left(\int_{0}^{0.2} g(x) dx = \int_{0}^{0.2} \left(\frac{2+5x}{\sqrt{1-8x^{2}}}\right) dx = \right)$	
	$\int_0^{0.2} \left(2^{*} + 5^{*} x + 8^{*} x^2 + 20^{*} x^3 + 48^{*} x^4 \right) dx$	M1
	$\left(\int_{0}^{0.2} g(x) dx = \right) \left[2x + \frac{5x^2}{2} + \frac{8x^3}{3} + \frac{20x^4}{4} + \frac{48x^5}{5} \right]_{0}^{0.2}$	M1
	$\left(\int_{0}^{0.2} g(x) dx = \right) 2 \times 0.2 + \frac{5 \times 0.2^{2}}{2} + \frac{8 \times 0.2^{3}}{3} + \frac{20 \times 0.2^{4}}{4} + \frac{48 \times 0.2^{5}}{5} \right)$	M1
	$= 0.532405333 \approx 0.5324$ Note: The calculator value is 0.5347698	A1 [4]
	Total	11 marks

PartMarkNotes(a)M1For an attempt at the binomial expansion. The expansion must: • Begin with 1 • The denominators must be correct • The powers of $-8x^2$ must be correct eg $(-8x^2)^2$ Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3. Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads.A1Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.(b)M1For attempting to expand $(a + bx)(1+cx^2 + dx^4 +)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2 + dx^4 +$ This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 +$
The expansion must:•Begin with 1•The denominators must be correct•The denominators must be correct eg $(-8x^2)^2$ Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3. Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads.A1Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.(b)M1For attempting to expand $(a + bx)(1 + cx^2 + dx^4 +)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 . It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2+dx^4+$
• Begin with 1• The denominators must be correct• The powers of $-8x^2$ must be correct eg $(-8x^2)^2$ Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3.Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads.A1Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.A1Fully correct and simplified(b)M1For attempting to expand $(a + bx)(1 + cx^2 + dx^4 +)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 . If is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1 + cx^2 + dx^4 +$ This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. Ignore terms with powers higher than 4.A1ftFor a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion from part (a) of the form $1+cx^2 + dx^4 +$ A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 +$ A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 +$
 The denominators must be correct The powers of -8x² must be correct eg (-8x²)² Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3. Allow a misread of ¹/₂ for -¹/₂ but not 8x² for -8x² - see gen guidance for misreads. A1 Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified. A1 Fully correct and simplified (b) M1 For attempting to expand (a+bx)(1+cx² + dx⁴ +) to reach at least the correct terms in x³ and x⁴ for their expansion from part (a) ie 4bx³ and 24ax⁴ or cbx³ and dax⁴. Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x³ and x⁴. They must be using an expansion from (a) of the form 1+cx² + dx⁴ + This mark may be implied from any following working. A1ft For a fully correct expansion in terms of x, a and b, up to the term in x⁴ or for 4b = 20 AND 24a = 48. Or if using an incorrect expansion from part (a) of the form 1+cx² + dx⁴ + for a fully correct expansion from part (a) of the form 1+cx² + dx⁴ + for a fully correct expansion from part (a) of the form 1+cx² + dx⁴ + for a fully correct must how the sigher than 4. A1ft Either a or b correct form the form 1+cx² + dx⁴ +
• The powers of $-8x^2$ must be correct eg $(-8x^2)^2$ Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3. Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads. Al Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified. Al Fully correct and simplified (b) M1 For attempting to expand $(a+bx)(1+cx^2+dx^4+)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2 + dx^4 +$ This mark may be implied from any following working. Alft For a fully correct expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4. Alft Either a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 +$
Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3. Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads.A1Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.(b)M1For attempting to expand $(a+bx)(1+cx^2+dx^4+)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2+dx^4+$ This mark may be implied from any following working.A1ftFor a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ or for $4b = 20$ AND $24a = 48$. Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from part (a) of the form $1+cx^2+dx^4+$
Ignore any terms with powers higher than 3.Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads.A1Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.(b)M1For attempting to expand $(a + bx)(1 + cx^2 + dx^4 +)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1 + cx^2 + dx^4 +$ This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1 + cx^2 + dx^4 +$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1 + cx^2 + dx^4 +$
Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads.A1Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.(b)M1For attempting to expand $(a + bx)(1+cx^2 + dx^4 +)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2 + dx^4 +$ This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x, a and b, up to the term in x^4 or for $4b = 20$ AND $24a = 48$. Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from part (a) of the form $1+cx^2 + dx^4 +$
A1Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.(b)M1For attempting to expand $(a+bx)(1+cx^2+dx^4+)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2+dx^4+$ This mark may be implied from any following working.A1ftFor a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion from part (b) of the form $1+cx^2+dx^4+$ A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2+dx^4+$
All conditions above met and at least one algebraic term correct and simplified.A1Fully correct and simplified(b)M1For attempting to expand $(a+bx)(1+cx^2+dx^4+)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2+dx^4+$ This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2+dx^4+$
A1Fully correct and simplified(b)M1For attempting to expand $(a+bx)(1+cx^2+dx^4+)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2+dx^4+$ This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2+dx^4+$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2+dx^4+$
(b) M1 For attempting to expand $(a+bx)(1+cx^2 + dx^4 +)$ to reach at least the correct terms in x^3 and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4. It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 . They must be using an expansion from (a) of the form $1+cx^2 + dx^4 +$ This mark may be implied from any following working. A1ft For a fully correct expansion in terms of x , a and b , up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 +$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4. A1ft Either a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 +$
and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4 Ignore terms with powers higher than 4.It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 .They must be using an expansion from (a) of the form $1+cx^2 + dx^4 + \dots$.This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x, a and b, up to the term in x^4 or for $4b = 20$ AND $24a = 48$.or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 + \dots$.for a fully correct expansion for $cb = 20$ AND $da = 48$.Ignore terms with powers higher than 4.A1ftEither a or b correctft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$.
Ignore terms with powers higher than 4.It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 .They must be using an expansion from (a) of the form $1+cx^2 + dx^4 + \dots$.This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x, a and b, up to the term in x^4 or for $4b = 20$ AND $24a = 48$.or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 + \dots$.for a fully correct expansion or $cb = 20$ AND $da = 48$.Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$.
It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 .They must be using an expansion from (a) of the form $1+cx^2 + dx^4 + \dots$.This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x, a and b, up to the term in x^4 or for $4b = 20$ AND $24a = 48$.or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 + \dots$.for a fully correct expansion or $cb = 20$ AND $da = 48$.Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$.
They must be using an expansion from (a) of the form $1+cx^2 + dx^4 + \dots$ This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x, a and b, up to the term in x^4 or for $4b = 20$ AND $24a = 48$.or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 + \dots$ for a fully correct expansion or $cb = 20$ AND $da = 48$.Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
This mark may be implied from any following working.A1ftFor a fully correct expansion in terms of x, a and b, up to the term in x^4 or for $4b = 20$ AND $24a = 48$.or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 + \dots$ for a fully correct expansion or $cb = 20$ AND $da = 48$.Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
A1ftFor a fully correct expansion in terms of x, a and b, up to the term in x^4 or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 + \dots$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4.A1ftEither a or b correct ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
or for $4b = 20$ AND $24a = 48$. or if using an incorrect expansion from part (a) of the form $1+cx^2 + dx^4 + \dots$ for a fully correct expansion or $cb = 20$ AND $da = 48$. Ignore terms with powers higher than 4. A1ft Either <i>a</i> or <i>b</i> correct ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
for a fully correct expansion or $cb = 20$ AND $da = 48$.Ignore terms with powers higher than 4.A1ftEither a or b correctft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
for a fully correct expansion or $cb = 20$ AND $da = 48$.Ignore terms with powers higher than 4.A1ftEither a or b correctft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
A1ft Either <i>a</i> or <i>b</i> correct ft their expansion from (a) of the form $1+cx^2 + dx^4 +$
ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
and $cb = 20$ AND $da = 48$.
A1ft Both a and b correct.
ft their expansion from (a) of the form $1+cx^2 + dx^4 + \dots$
and $cb = 20$ AND $da = 48$.
(c) M1 For using their expansion from (b) with the correct limits.
Although their expression does not need to be fully correct, it must be clear it has arisen from
attempting to find <i>a</i> and <i>b</i> in part (b) and using these values.
The expression must include the first 5 terms in their expansion of the form $\frac{2}{3}$
$p + qx + rx^2 + sx^3 + tx^4$ from part (b) using their <i>a</i> and <i>b</i> and may include more for this mark.
It is not necessary to see the integral sign, if the candidate clearly integrates later.
Similarly, if the limits are not present until substitution, this mark can be awarded.
M1 For an attempt to integrate an expression (see general guidance) – no power of x to decrease.
This is not a dependent method mark and the mark is for an attempt to integrate, but they must integrate all their terms and there must be a minimum of 2 algebraic terms.
M1 For substitution of the given limits the correct way around. There must be at least one correct
substitution of limits into their changed expression with a minimum of 2 algebraic terms (ie
this again is not a dependent method mark). 0 need not be substituted if substitution into the
changed expression gives an evaluation of 0.
This may be implied by a correct answer, but must be shown if the final answer is not correct.
A1 For awrt 0.5324 ie condone more decimal places.
The question does not demand that students use algebraic integration or show their working clearly and therefore
a correct answer of 0.5324 may imply the method marks and full marks should be awarded.
A value of 0.5347will score 0 marks.

Question	Scheme	Marks
10(a)(i)	$\sin(A+A) = \sin A \cos A + \cos A \sin A = 2\sin A \cos A^*$	B1
(ii)	$\cos(A+A) = \cos A \cos A - \sin A \sin A$	cso
	$\Rightarrow \cos 2A = \cos^2 A - \sin^2 A$	M1
	$=\cos^2 A - \left(1 - \cos^2 A\right)$	A 1*aga
	$= 2\cos^2 A - 1 *$	A1*cso [3]
(b)		
	$\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) = \frac{2\frac{\sin\theta}{\cos\theta}}{1+\frac{\sin^2\theta}{\cos^2\theta}}$	M1
	$=\frac{2\frac{\sin\theta}{\cos\theta}}{\frac{\cos^2\theta+\sin^2\theta}{\cos^2\theta}} \text{or} \frac{2\frac{\sin\theta}{\cos\theta}}{1+\frac{1}{\cos^2\theta}-\frac{\cos^2\theta}{\cos^2\theta}} \text{or} \frac{2\frac{\sin\theta}{\cos\theta}}{1+\frac{\sin^2\theta}{\cos^2\theta}} \times \frac{\cos^2\theta}{\cos^2\theta} \text{or} \frac{2\sin\theta\cos\theta}{\cos^2\theta+\sin^2\theta}$	dM1
	$=\frac{2\frac{\sin\theta}{\cos\theta}}{\frac{1}{\cos^2\theta}}\left(=2\frac{\sin\theta}{\cos\theta}\times\cos^2\theta\right)\operatorname{or}\left(\frac{2\sin\theta\cos\theta}{\cos^2\theta+\sin^2\theta}\right)=2\sin\theta\cos\theta$	ddM1
	$=\sin 2\theta *$	A1*cso [4]
ALT	$\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) = \frac{2\frac{\sin\theta}{\cos\theta}}{1+\frac{\sin^2\theta}{\cos^2\theta}}$	M1
	$=\frac{2\frac{\sin\theta}{\cos\theta}}{1+\tan^2\theta}$	dM1
	$\cos^{2}\theta + \sin^{2}\theta = 1 \Longrightarrow \tan^{2}\theta + 1 = \frac{1}{\cos^{2}\theta} \implies \frac{2\frac{\sin\theta}{\cos\theta}}{\frac{1}{\cos^{2}\theta}} \left(=2\frac{\sin\theta}{\cos\theta} \times \cos^{2}\theta\right) = 2\sin\theta\cos\theta$	ddM1
	$=\sin 2\theta^*$	A1*cso [4]
(c)	$\frac{5\tan\left(x+\frac{\pi}{6}\right)}{1+\tan^2\left(x+\frac{\pi}{6}\right)} = \left(1-2\cos^2\left(x+\frac{\pi}{6}\right)\right) \Rightarrow \frac{5}{2}\sin\left(2\left(x+\frac{\pi}{6}\right)\right) = \left(1-2\cos^2\left(x+\frac{\pi}{6}\right)\right)$	M1
	$1 - 2\cos^2\left(x + \frac{\pi}{6}\right) = -\cos\left(2x + \frac{\pi}{3}\right)$	M1
	$\left(\frac{5}{2}\sin\left(2x+\frac{\pi}{3}\right) = -\cos\left(2x+\frac{\pi}{3}\right) \Rightarrow \right)\tan\left(2x+\frac{\pi}{3}\right) = -\frac{2}{5}$	M1
	$\left(\Longrightarrow 2x + \frac{\pi}{3} = \right) - 0.38050, 2.76108$	M1
	$(\Rightarrow x =) - 0.714, 0.857$	A1A1 [6]

(d)	$I = \int_0^{\frac{\pi}{2}} \left(2\sin 2\theta - \cos 5\theta + 2\right) \{\mathrm{d}\theta\}$	M1
	$= \left[\frac{-2\cos 2\theta}{2} - \frac{\sin 5\theta}{5} + 2\theta\right]_{0}^{\frac{\pi}{2}}$	M1
	$= \left(-\cos 2\left(\frac{\pi}{2}\right) - \frac{\sin 5\left(\frac{\pi}{2}\right)}{5} + 2 \times \left(\frac{\pi}{2}\right)\right) - \left(-\cos 2(0) - \frac{\sin 5(0)}{5} + 2 \times 0\right)$	M1
	$\left(= \left(1 - \frac{1}{5} + \pi\right) - \left(-1 - 0 + 0\right) \right) = \frac{9}{5} + \pi$	A1 [4]
	Total 1	17 marks

Part	Mark	Notes
(a)	B1	For $\sin(A+A)$ or $\sin 2A = \sin A \cos A + \cos A \sin A = 2\sin A \cos A^*$
	cso	No steps missing or incorrect work. Condone $\sin A + A$ with brackets missing if all other work
		correct.
	M1	For $\cos A \cos A - \sin A \sin A \Rightarrow \cos^2 A - \sin^2 A$
	A1* cso	For $\cos(A+A)$ or $\cos 2A = \cos A \cos A - \sin A \sin A \Rightarrow \cos^2 A - \sin^2 A = \cos^2 A - (1 - \cos^2 A)$
	050	$=2\cos^2 A - 1$
		No steps missing, no incorrect work. Condone $\cos A + A$ with brackets missing if all other work
Q 1		correct.
		iss 'A' in their working, (eg coscos – sinsin) may be awarded M mark, but not A or B marks.
(b)	M1	Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}$ in the given identity.
		Allow the 2 to be missing for this mark but not the final A mark.
	dM1	
		For $1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}$ or multiplying by $\frac{\cos^2 \theta}{\cos^2 \theta}$ to give $\left(\frac{2\frac{\sin \theta}{\cos \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}}\right) = \frac{2\sin \theta \cos \theta}{\cos^2 \theta + \sin^2 \theta}$
		$\frac{1}{\cos^2\theta} = \frac{1}{\cos^2\theta} = 1$
		The $\times \frac{\cos^2 \theta}{\cos^2 \theta}$ does not need to be explicitly written.
	112.64	Dependent on previous method mark.
	ddM1	For minimum steps (and dependent on previous method marks):
		$2\frac{\sin\theta}{\cos\theta}$ $2\sin\theta\cos\theta$
		$\frac{2\frac{\sin\theta}{\cos\theta}}{1} \text{ or } \frac{2\sin\theta\cos\theta}{\cos^2\theta + \sin^2\theta} = 2\sin\theta\cos\theta$
		$\frac{1}{\cos^2\theta}$
	A1*cso	Achieves the required result – minimum steps as shown, no errors.
		Steps in brackets do not need to be shown.
ALT	M1	Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}$ in the given identity.
	dM1	
		For replacing $1 + \frac{\sin^2 \theta}{\cos^2 \theta}$ with $1 + \tan^2 \theta$
		Dependent on previous method mark.
	ddM1	$2\frac{\sin\theta}{2}$
		For replacing $\tan^2 \theta + 1 = \frac{1}{\cos^2 \theta} \implies \frac{2 \cos \theta}{1} = 2 \sin \theta \cos \theta$
		$\cos^2 \theta$
	A1*cso	Dependent on both previous method marks. Achieves the required result – minimum steps as shown, no errors.
	111 050	Steps in brackets do not need to be shown.

Steps in brackets do not need to be shown.Students who miss θ in their working, may be awarded M marks, but not the A mark.

		roughout where candidates have let, for example $\theta = x + \frac{\pi}{6}$ and worked in θ and 2θ throughout in (c)
(c)	M1	Rearranges the given equation into $\frac{5\tan\left(x+\frac{\pi}{6}\right)}{1+\tan^2\left(x+\frac{\pi}{6}\right)} = \left(1-2\cos^2\left(x+\frac{\pi}{6}\right)\right)$ and changes the left hand
		side into $P \sin\left(2\left(x+\frac{\pi}{6}\right)\right)$ where <i>P</i> is any constant.
	M1	Correctly states or uses $1 - 2\cos^2\left(x + \frac{\pi}{6}\right) = -\cos\left(2x + \frac{\pi}{3}\right)$ (condone being replaced with $-\cos 2A$)
	M1	For $\tan\left(2x + \frac{\pi}{3}\right) = Q$ where Q is any constant.
	M1	For -0.38050 or 2.76108 This may be awarded for either value being seen, ignore any extra values seen. Accept any values with at least 3 significant figures.
	A1	For $(x=)-0.714$ or $(x=)0.857$ This may be awarded for either value being seen, ignore any extra values seen. Accept any value with more than 3 significant rounding to those given.
	A1	For $(x =) - 0.714$ and $(x =) 0.857$ Ignore any extra values out of range . Extra values in range will mean A0. Accept any value with more than 3 significant rounding to those given.
Stude	nts must	use θ or $x + \frac{\pi}{6}$ and 2θ or $2\left(x + \frac{\pi}{6}\right)$
(d)	M1	For changing the integral into $(I =) \int_{0}^{\frac{\pi}{2}} (2\sin 2\theta - \cos 5\theta + 2) \{d\theta\}$ d θ may be omitted. If the integral sign and limits are not present, these can be implied by a clear attempt in later work to integrate all the terms and a substitution of limits. Students must use 2θ and 5θ in their working.
	M1	For a minimum of 2 out of the 3 terms shown above correctly integrated. Students must use 2θ and 5θ in their working.
	M1	For substituting in the given limits the correct way around into their changed function with at least two terms, there must be at least one explicit substitution of each limit. If the candidate has a constant term as part of the function, they can omit this from this step (as the terms cancel out anyway). This mark may be implied by a correct answer. If the candidate is working with an incorrect function and substitution of 0 clearly gives 0, this substitution does not need to be shown.
	A1	For $\frac{9}{5} + \pi$ The approximate decimal value 4.941will usually indicate correct working (as a guide),
T (1 *		but a substitution of limits will be needed to get the 3 rd method mark.
	may be in	n, students are directed to use calculus, so must show a correct integration. The penultimate method nplied from a fully correct answer, but if the answer is not correct, we must see substitution of limits as

Question	Scheme	Marks
-	any log questions, there are a number of ways of reaching a correct answ	
	cheme shows 3 common routes, with a set of general principles in the no	
	iations in methods will have been captured, please mark to general prin NY work where this is not possible and worthy of marks to REVIEW.	icipies,
0	les work that converts everything to completely new bases.	
11	$2\log_4 x = \log_3 3y^2$	
Eg1	$2\log_2 x$ $\log_2 x + \log_2 x + 2\log_2 x + 2\log_2 x + 2\log_2 x + \log_2 x + $	
	$\frac{2\log_2 x}{\log_2 4} = \log_3 3 + \log_3 y^2 \Longrightarrow \frac{2\log_2 x}{\log_2 4} - 2\log_3 y = 1$	M1B1
	$\Rightarrow \log_2 x - 2\log_3 y = 1$ oe	M1M1
	$\log_2 x^3 + 8\log_9 y = 13$	
	$3\log_{x} r + \frac{8\log_{3} y}{12} - 13 \rightarrow 3\log_{x} r + 4\log_{y} v - 13$ or	
	$3\log_2 x + \frac{8\log_3 y}{\log_3 9} = 13 \Longrightarrow 3\log_2 x + 4\log_3 y = 13$ oe	
	Solves the simultaneous equations by any method to find a value for	
	$\log_2 x$ or $\log_3 y$	dddM1
	$3\log_2 x + 4\log_3 y = 13$ oe	
	$\log_2 x - 2\log_3 y = 1 \qquad \text{oe}$	A1
	$\Rightarrow \log_2 x = \frac{15}{5}$ or $\log_3 y = \frac{10}{10}$ oe	AI
	$x = 2^{\frac{15}{5}} = 8 \qquad y = 3^{\frac{10}{10}} = 3$	M1 A1 [8]
Eg2	$2\log_4 x = \log_3 3y^2$	
	$2\log_4 x = \log_3 3 + \log_3 y^2 \Longrightarrow 2\log_4 x = 1 + 2\log_3 y$ oe	
		M1B1
	$\log_2 x^3 + 8\log_9 y = 13$	M1M1
	$\frac{\log_4 x^3}{\log_4 2} + \frac{8\log_3 y}{\log_2 9} = 13 \Longrightarrow 2\log_4 x^3 + 4\log_3 y = 13$	
	$\log_4 2 + \log_3 9 = 15 \implies 2\log_4 x + 4\log_3 y = 15$	
	$\Rightarrow 6\log_4 x + 4\log_3 y = 13$ oe	
	Solves the simultaneous equations by any method to find a value for	
	$\log_4 x$ or $\log_3 y$	
	$2\log_4 x = 1 + 2\log_3 y \qquad \text{oe}$	dddM1
	$6\log_4 x + 4\log_3 y = 13 \qquad \text{oe}$	
	$\Rightarrow \log_4 x = \frac{15}{10}$, or $\log_3 y = \frac{10}{10}$ oe	A1
	$x = 4^{\frac{15}{10}} = 8 \qquad y = 3^{\frac{10}{10}} = 3$	M1 A1 [8]

		-
Eg3	$2\log_4 x = \log_3 3 y^2$	
	$2\log_4 x = \frac{\log_9 3y^2}{\log_9 3} \Longrightarrow \log_4 x = \log_9 3y^2 \Longrightarrow \log_4 x = \log_9 3 + \log_9 y^2$	M1B1
	$\Rightarrow \log_4 x = 0.5 + 2\log_9 y \text{ oe}$	M1M1
	$\log_2 x^3 + 8\log_9 y = 13$	
	$\frac{\log_4 x^3}{\log_4 2} + 8\log_9 y = 13 \Longrightarrow \log_4 x^3 + 4\log_9 y = \frac{13}{2}$	
	$\Rightarrow 3\log_4 x + 4\log_9 y = \frac{13}{2} \text{ oe}$	
	Solves the simultaneous equations by any method to find a value for $\log_4 x$ or $\log_9 y$	
	$3\log_4 x + 4\log_9 y = \frac{13}{2}$ oe	dddM1
	$\log_4 x = 0.5 + 2\log_9 y$ oe	
	$\Rightarrow \log_4 x = \frac{15}{10}$ or $\log_9 y = \frac{5}{10}$ oe	A1
	$x = 4^{\frac{15}{10}} = 8 \qquad y = 9^{\frac{5}{10}} = 3$	M1 A1 [8]
An aid to m	arking (please also see more detailed notes).	
Correct app	lication of addition/subtraction law, anywhere in working.	M1
	ignore any other incorrect applications.	
	e evaluation of a $\log_a a^b = b$ seen.	B1
Look for implicit evaluation during change of base of log. a, b rational.		
Correct application of the power law seen once anywhere. M1		M1
Once seen, ignore any other incorrect applications.		
-	Any correct change of base seen once anywhere. M1	
	ignore any other incorrect applications.	
Solve a pair required for	of simultaneous equations – one error permitted, see detailed notes for m.	dddM1
-	log equation following from this solution.	A1
	og of the required form – see detailed notes.	M1
-	t values of x and y.	Al
Note also th		
$2\log_4 x = \log_4 x$	$g_2 x$ or $8 \log_9 y = 4 \log_3 y$ or $\log_2 x^3 = 2 \log_4 x^3$ or $\log_3 3y^2 = 2 \log_9 3y^2$	
will normal	will normally imply B1 and 3 rd M1	

ALT1	$2\log_4 x = \log_3 3y^2$	
	$\frac{2\log_2 x}{\log_2 4} = \log_3 3y^2 \Longrightarrow \log_2 x = \log_3 3y^2$	M1
	$\log_2 x^3 + 8\log_9 y = 13 \Longrightarrow 3\log_2 x + 8\log_9 y = 13$	B1 M1
	$3\log_3 3y^2 + 8\log_9 y = 13$	M1
	$\log_3 27 y^6 + 8 \frac{\log_3 y}{\log_3 9} = 13$	dddM1
	$\log_3 27 y^6 + 4 \log_3 y = 13$	
	$\log_3 27 y^6 + \log_3 y^4 = 13$	
	$\log_3 27 y^{10} = 13$	A1
	$27 y^{10} = 3^{13}$	
	$y = \sqrt[10]{\frac{3^{13}}{27}} = 3$	M1
	$\log_2 x = \log_3 3 \times 3^2 \Longrightarrow \log_2 x = 3$	A1
	$x = 2^3 = 8$	[8]
ALT2	$2\log_4 x = \log_3 3y^2$	
	$3\log_4 x = \frac{3}{2}\log_3 3y^2 \Longrightarrow \log_4 x^3 = \frac{3}{2}\log_3 3y^2$	M1
	$\frac{\log_2 x^3}{\log_4 2} = \frac{3}{2} \log_3 3y^2 \Longrightarrow \log_4 x^3 = 3 \log_3 3y^2$	B1 M1
	$3\log_3 3y^2 + 8\log_9 y = 13$	M1
	$\log_3 27 y^6 + 8 \frac{\log_3 y}{\log_3 9} = 13$	
	$\log_3 27 y^6 + 4 \log_3 y = 13$	
	$\log_3 27 y^6 + \log_3 y^4 = 13$	dddM1
	$\log_3 27 y^{10} = 13$	A1
	$27 y^{10} = 3^{13}$	
	$\log_{3} 27 y^{10} = 13$ $27 y^{10} = 3^{13}$ $y = \sqrt[10]{\frac{3^{13}}{27}} = 3$	M1
	$\log_2 x = \log_3 3 \times 3^2 \Longrightarrow \log_2 x = 3$	A1
	$x = 2^3 = 8$	[8]
	Total	8 marks

PMT

Mark	Notes
M1	For any correct application of the addition (or subtraction) law eg
	$\log_3 3y^2 = \log_3 3 + \log_3 y^2$
	Seen anywhere in their working once, ignore any other incorrect applications.
B1	For $\log_3 3 = 1$ or if students do a change of base first, this mark can also be awarded for
	example for $\log_2 4 = 2$ or $\log_3 9 = 2$ or $\log_4 2 = 0.5$ or $\log_9 3 = 0.5$ - note that this
	evaluation may not be explicitly seen, but seen in the simplification of an equation, particularly following a change of base of logs.
	This mark may be awarded for any correct use of $\log_a a^b = b$ seen. <i>a</i> , <i>b</i> rational.
M1	For applying the power law correctly with either $\log_p x^3$ or $\log_q y^2$
	p = 2 or 4 q = 3 or 9
	Seen anywhere in their working once, ignore any other incorrect applications.
M1	For changing the base of any log in either equation.
	eg $2\log_4 x = \frac{2\log_2 x}{\log_2 4}$ or $8\log_9 y = \frac{8\log_3 y}{\log_3 9}$ or $\log_2 x^3 = \frac{\log_4 x^3}{\log_4 2}$ or $\log_3 3y^2 = \frac{\log_9 3y^2}{\log_9 3}$
	This mark may be awarded for any correct change of base of logs seen.
	Seen anywhere in their working once, ignore any other incorrect applications.
dddM1	For solving their simultaneous equations by any valid complete method.
	Allow one error. Candidates must reach a value for
	$\log_p x^n$ or $\log_q y^m$ $p = 2$ or $4 q = 3$ or $9 m, n$ constants
	Dependent on all 3 previous method marks.
	The equations must be in a form with $\log_p ax^n$ and $\log_q by^m$ in $p = 2$ or $4 q = 3$ or 9
	All methods of solving (substitution and elimination being the most common) are valid.
A1	For the correct values of
	$\log_p x^n$ or $\log_q y^m$ $p = 2$ or 4 $q = 3$ or 9 m, n constants
	Markers will need to check the solution of candidates' simultaneous equations, but
	more than one error seen will result in dddM0 and A0.
	The question asks students to show their working clearly.
	This accuracy mark would generally only be gained after clearly seeing the work for the previous 4 method marks. If there is a solution where it is clear the student
	is working more concisely and fully correctly, perhaps taking shortcuts or missing
	the odd step – please send this to Review.
M1	For a correct method to 'undo' the logs on any equation of the form
	$\log_p ax^n = E$ or $\log_q by^m = F$ $p = 2$ or 4 $q = 3$ or 9 , E , m and n are non-zero
	constants.
A1	For the correct values of <i>x</i> and <i>y</i>

ALTS	For any similar methods mark using the same principles, but send to Review, if
	not clear how to implement these.
ALT1 M1	For change of base of log eg $2\log_4 x = 2\frac{\log_2 x}{\log_2 4}$ or $8\log_9 y = 8\frac{\log_3 y}{\log_3 9}$
	This mark may be awarded for any correct change of base of logs seen.
B1	For $\log_2 4 = 2$ or $\log_3 9 = 2$.
	This mark may be awarded for any correct use of $\log_a a^b = b$ seen. <i>a</i> , <i>b</i> rational.
M1	For applying the power law correctly with $\log_2 x^3$
	or in reverse $3\log_3 3y^2 \Rightarrow \log_3 27y^6$
M1	For correctly using $\log_2 x = \log_3 3y^2$ in $3\log_2 x + 8\log_9 y = 13$
dddM1	For using the addition (or subtraction) law in reverse $\log_3 27y^6 + \log_3 y^4 \Rightarrow \log_3 27y^{10}$
A1	For $\log_3 27 y^{10} = 13$
M1	For a correct method to undo logs.
A1	For the correct values of <i>x</i> and <i>y</i>
ALT2 M1	For applying the power law correctly in reverse $3\log_2 x = \log_2 x^3$
B1	For $\log_2 4 = 2$ or $\log_3 9 = 2$.
	This mark may be awarded for any correct use of $\log_a a^b = b$ seen. <i>a</i> , <i>b</i> rational.
M1	For change of base of log eg $2\log_4 x = 2\frac{\log_2 x}{\log_2 4}$ or $8\log_9 y = 8\frac{\log_3 y}{\log_3 9}$
	This mark may be awarded for any correct change of base of logs seen.
M1	For correctly using $\log_4 x^3 = 3\log_3 3y^2$ in $3\log_3 3y^2 + 8\log_9 y = 13$
dddM1	For using the addition (or subtraction) law in reverse $\log_3 27y^6 + \log_3 y^4 \Rightarrow \log_3 27y^{10}$
A1	For $\log_3 27 y^{10} = 13$
M1	For a correct method to undo logs.
A1	For the correct values of <i>x</i> and <i>y</i>

PMT